top of page
  • stefanovagnini

Mathesis Universalis

Aggiornamento: 13 dic 2022


Mathesis universalis (from Greek: μάθησις, mathesis "science or learning", and Latin: universalis "universal") is a hypothetical universal science modelled on mathematics envisaged by Descartes and Leibniz, among a number of other 16th- and 17th-century philosophers and mathematicians. For Leibniz, it would be supported by a calculus ratiocinator. John Wallis invokes the name as title in his Opera Mathematica, a textbook on arithmetic, algebra, and Cartesian geometry.


History

Frontispiece of Universae mathesis idea (1602) by Adriaan van Roomen

Descartes' most explicit description of mathesis universalis occurs in Rule Four of the Rules for the Direction of the Mind, written before 1628.[1] Leibniz attempted to work out the possible connections between mathematical logic, algebra, infinitesimal calculus, combinatorics, and universal characteristics in an incomplete treatise titled "Mathesis Universalis" in 1695.

Predicate logic could be seen as a modern system with some of these universal qualities, at least as far as mathematics and computer science are concerned. More generally, mathesis universalis, along with perhaps François Viète's algebra, represents one of the earliest attempts to construct a formal system.

One of the perhaps most prominent critics of the idea of mathesis universalis was Ludwig Wittgenstein and his philosophy of mathematics.[2] As Anthropologist Emily Martin notes:[3]

Tackling mathematics, the realm of symbolic life perhaps most difficult to regard as contingent on social norms, Wittgenstein commented that people found the idea that numbers rested on conventional social understandings "unbearable".

René Descartes


In Descartes' corpus the term mathesis universalis appears only in the Rules for the Direction of the Mind.[1] In the discussion of Rule Four, Descartes' provides his clearest description of mathesis universalis:

Rule FourWe need a method if we are to investigate the truth of things.[...] I began my investigation by inquiring what exactly is generally meant by the term 'mathematics' and why it is that, in addition to arithmetic and geometry, sciences such as astronomy, music, optics, mechanics, among others, are called branches of mathematics. [...] This made me realize that there must be a general science which explains all the points that can be raised concerning order and measure irrespective of the subject-matter, and that this science should be termed mathesis universalis — a venerable term with a well-established meaning — for it covers everything that entitles these other sciences to be called branches of mathematics. [...] — René Descartes, Rules for the Direction of the Mind; translated by John Cottingham[4]

Gottfried Leibniz


In his account of mathesis universalis, Leibniz proposed a dual method of universal synthesis and analysis for the ascertaining truth, described in De Synthesi et Analysi universale seu Arte inveniendi et judicandi (1890).[5][6]

Ars inveniendi

Ars inveniendi (Latin for "art of invention") is the constituent part of mathesis universalis corresponding to the method of synthesis.[5][6] Leibniz also identified synthesis with the ars combintoria, viewing it in terms of the recombination of symbols or human thoughts.[5]

Ars judicandi

Ars judicandi (Latin for "art of judgement") is the constituent part of mathesis universalis corresponding to the method of analysis.[5]


Michel Foucault


In The Order of Things, Michel Foucault discuses mathesis as the conjunction point in the ordering of simple natures and algebra, paralleling his concept of taxinomia. Though omitting explicit references to universality, Foucault uses the term to organise and interpret all of human science, as is evident in the full title of his book: "The Order of Things: An Archaeology of the Human Sciences".[7]




17 visualizzazioni0 commenti

Post recenti

Mostra tutti

Comments


bottom of page